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Abstract

Formaldehyde is a widely used but highly reactive and toxic chemical. The International Agency for Research on
Cancer classifies formaldehyde as a Group 1 carcinogen, based on nasopharyngeal cancer and leukemia studies.
However, the correlation between formaldehyde exposure and leukemia incidence is a controversial issue. To
understand the association between formaldehyde exposure and leukemia, we explored biological networks based
on formaldehyde-related genes retrieved from public and commercial databases. Through the literature-based
network approach, we summarized qualitative associations between formaldehyde exposure and leukemia. Our
results indicate that oxidative stress-mediated genetic changes induced by formaldehyde could disturb the
hematopoietic system, possibly leading to leukemia. Furthermore, we suggested major genes that are thought to
be affected by formaldehyde exposure and associated with leukemia development. Our suggestions can be used to
complement experimental data for understanding and identifying the leukemogenic mechanism of formaldehyde.
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Background
Formaldehyde is a colorless, pungent-smelling, and
highly reactive chemical with toxic properties. As the
simplest aldehyde form (H-CHO), formaldehyde is syn-
thesized by the catalytic oxidation of methanol. It is also
easily dissolved in water; a 37% formaldehyde solution is
used as a preservative, pesticide, and disinfectant. For-
maldehyde is manufactured commercially and used ex-
tensively in many products, such as resins, plastics,
textiles, wood products, adhesives, medicines, and cos-
metics [1]. The predominant route of formaldehyde ex-
posure is inhalation occurring during environmental and
occupational exposure [2]. Environmental exposure to
formaldehyde occurs more frequently indoors than

outdoors due to the widespread use of products contain-
ing formaldehyde [3]. The World Health Organization
recommends an indoor limit of formaldehyde of 0.1 mg/
m3 (0.08 ppm) [4]. Occupational exposure to formalde-
hyde is variable and occurs in numerous industries, in-
cluding manufacturing [5]. Small amounts of
formaldehyde are naturally generated in living organisms
through normal metabolic processes, such as DNA/
RNA/histone demethylation and oxidative deamination
[6]. The concentration of endogenous formaldehyde in
the blood of humans is approximately 2–3 mg/L (0.1
mM) [7]. Therefore, many people are constantly exposed
to formaldehyde, in large or small quantities, in their
daily lives because of its ubiquitous nature.
Exogenous formaldehyde exposure is commonly asso-

ciated with eye and upper respiratory tract irritation.
Formaldehyde is genotoxic and cytotoxic, inducing DNA
damage and chromosomal changes [8]. Increased gen-
omic instability from genotoxic chemicals can increase
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the risk of cancer [9–12]. Formaldehyde is classified as a
human carcinogen (Group 1) by the International
Agency for Research on Cancer (IARC), based on studies
of nasopharyngeal cancer and leukemia [13]. However,
studies on the causal relationship between formaldehyde
exposure and leukemia development are controversial,
with conflicting results [14].
Advances in molecular biology and bioinformatics

have led to the development of disciplines that focus on
the organization and analysis of large-scale biological
data [15, 16]. Toxicogenomics (a combination of toxicol-
ogy and genomics) is a field that studies genomic re-
sponses to xenobiotic exposures [17, 18].
Toxicogenomics provides information on the effects of
toxicant exposure on humans, ranging from genetic al-
terations to disease, based on a genetic profile, with the
goal of identifying biomarkers and toxicity mechanisms
using high-throughput technologies [19–21]. Many pub-
lic resources on chemical–gene–disease interactions and
other toxicogenomic information can be easily accessed
[22]. The macroscopic integration of existing knowledge
can result from big data utilization, leading to new per-
spectives on intricate biological interactions. In this re-
view, we discuss the carcinogenicity of formaldehyde in
relation to leukemia through a toxicogenomic approach.
Using public and commercial databases, we explore bio-
logical networks to better understand the association be-
tween formaldehyde exposure and leukemia
development.

Review
Carcinogenicity of formaldehyde
In the early 1980s, findings from studies on nasal tumors
in rats exposed to formaldehyde provoked concern
about its carcinogenicity [23–25]. Diverse chronic and
sub-chronic rodent studies provided sufficient evidence
that inhalation and oral administration routes of formal-
dehyde exposure induce cancer [13]. Furthermore,
concentration-dependent increases of formaldehyde on
tumor incidence and cell proliferation were demon-
strated [26, 27]. The association between formaldehyde
and the development of cancers was also reported in
many epidemiological studies [13]. At the National Can-
cer Institute (NCI), Hauptmann et al. conducted the lar-
gest epidemiological study on occupational exposure to
formaldehyde and found a statistically significant in-
crease in death from nasopharyngeal cancer [28]. Based
on the comprehensive results of large-scale human and
animal studies, the IARC concluded that formaldehyde
causes nasopharyngeal cancer and leukemia and is posi-
tively associated with sinonasal cancer [13].
Formaldehyde can react with DNA, and in the major-

ity of studies, it displays genotoxicity during mutation
tests in vitro and in vivo [29]. Increased DNA damage,

micronucleus formation, sister chromatid exchanges,
and chromosome aberrations in peripheral lymphocytes
and nasal mucosa were observed during human occupa-
tional studies on formaldehyde exposure [30–32]. Sig-
nificant changes in the percentage of B cells, cytotoxic T
cells, and natural killer cells were found, and genetic
polymorphisms in metabolic and DNA repair genes were
associated with increased genetic damages in subjects
exposed to formaldehyde [33–35]. Exogenous and en-
dogenous formaldehyde can induce N2-hydroxymethyl-
dG adducts [36]. In vitro studies showed induction of
DNA–protein crosslinks (DPCs) by formaldehyde expos-
ure in white blood and nasal epithelial cells [37, 38]. In
addition, DPCs in white blood cells were higher in
workers exposed to formaldehyde than in non-exposed
workers [37, 39]. As the early lesions in the process of
carcinogenesis, the level of DPCs is considered a bio-
marker of formaldehyde exposure [37, 39]. These geno-
toxic effects are the potential carcinogenic mode of
action for formaldehyde [5, 27].

Association between formaldehyde exposure and leukemia
incidence
Although the carcinogenicity of formaldehyde as a con-
sequence of chronic exposure has been indicated [13],
the biological mechanisms by which formaldehyde in-
duces cancer are not completely understood. The associ-
ation between formaldehyde exposure and the
occurrence of leukemia is especially disputable. After
examining the data from various epidemiological and
animal studies, the IARC concluded that there is “strong
but not sufficient evidence” that formaldehyde causes
leukemia [13]. Three large industrial cohort studies [40–
42] notably influenced the interpretation of other studies
on formaldehyde exposure and leukemia, and positive
associations were observed in the two cohort studies [41,
42]. Coggon et al. investigated a cohort of 14,014
workers at six British factories where formaldehyde was
produced or used, and they observed no association [40].
Hauptmann et al. retrospectively analyzed the data from
a study undertaken by the NCI that included 25,619
workers at 10 U.S. industrial plants that used or pro-
duced formaldehyde [41]. Pinkerton et al. conducted a
study for the National Institute for Occupational Safety
and Health that included 11,039 workers in three gar-
ment plants where formaldehyde resins were used in
fabric processing [42]. These three original studies and
their updated versions are summarized in Table 1 [40–
45]. A review of the recent study findings that included
an extended follow-up period after 10 years or more
showed that the risk of leukemia tended to decrease.
Some case-control studies evaluated the risk of lympho-
hematopoietic malignancies, but no significant elevations
of leukemia risk were found [46–49]. Among these
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studies, Linos et al. showed a significantly elevated risk
for acute myeloid leukemia (AML) among employees in
funeral homes and crematories when age and state of
residence were adjusted (three exposed cases, odds ra-
tio = 6.7, 95% confidence interval = 1.2–36.2) [47].
Hauptmann et al. also reported a significantly increased
risk for myeloid leukemia among funeral industry
workers who performed embalming for more than 34
years compared to subjects who performed embalming
less than 500 times (14 exposed cases, odds ratio = 3.9,
95% confidence interval = 1.2–12.5, p = 0.024) [50].
Other epidemiological studies, meta-analyses, and re-
evaluations of previous studies showed inconsistent find-
ings on the association between formaldehyde and
leukemia [2, 8, 13, 51–53].
There is debate on the biological plausibility of

whether formaldehyde can induce distant-site toxicity, as
formaldehyde is rapidly metabolized and highly reactive,
and its toxicity is generally limited to the local exposure
site [5, 54]. Therefore, it would be valuable to demon-
strate the formaldehyde-induced leukemogenic traits,
such as 1) exogenous formaldehyde can reach the bone
marrow, 2) formaldehyde can induce hematopoietic tox-
icity, and 3) leukemia occurs in animal models exposed
to formaldehyde [29]. Zhang et al. suggested three

potential mechanisms for formaldehyde-induced
leukemia: direct damage to stem cells in the bone mar-
row through the blood, damage to hematopoietic stem/
progenitor cells circulating in the blood, and damage to
primitive pluripotent stem cells present within nasal or
oral passages [8]. Considering that formaldehyde and its
metabolic pathway exist naturally in all cells, it is likely
that formaldehyde toxicity occurs as a result of high
concentration exposure that overwhelms normal meta-
bolic capacities [29]. As a basis for the occurrence of
distant-site toxicity, several studies were undertaken to
estimate increased formaldehyde concentrations in the
blood due to formaldehyde exposure. Significant effects
of formaldehyde exposure were not observed in the
blood of humans exposed to 1.9 ppm for 40min, rats ex-
posed to 14.4 ppm for 2 h [7], or in rhesus monkeys ex-
posed to 6 ppm for 6 h/day, 5 days/week for 4 weeks
[55]. The failure of exogenous formaldehyde to increase
formaldehyde levels in the blood decreases the likelihood
that formaldehyde directly affects the bone marrow.
Other studies used radiolabeled formaldehyde to exam-
ine its systemic toxicity in distant sites. Rats exposed to
up to 15 ppm of 14C- and 3H-formaldehyde for 6 h did
not show an increase in covalent adducts in the bone
marrow [56]. Rats lacking glutathione, required for

Table 1 Summary of large cohort studies about formaldehyde and leukemia

Author Cohort descriptions Results (95% CI) Comments

Coggon et al. [40] 14,014 workers at factories
1941–2000

Leukemia: 31 deaths
SMR 0.91 (0.62–1.29)
Leukemia: 8 deaths
SMR 0.71 (0.31–1.39)

All subjects
High exposure ≥2.0 ppm group

Coggon et al. [43] Update of Coggon et al.
1941–2012

Leukemia: 54 deaths
SMR 1.02 (0.77–1.33)
Myeloid Leukemia: 36 deaths
SMR 1.20 (0.84–1.66)
Leukemia: 13 deaths
SMR 0.82 (0.44–1.41)
Myeloid Leukemia: 8 deaths
SMR 0.93 (0.40–1.82)

All subjects
High exposure ≥2.0 ppm group

Hauptmann et al. [41] 25,619 workers at factories
1966–1994

Leukemia: 29 deaths
RR 2.46 (1.31–4.62)
Myeloid Leukemia: 14 deaths
RR 3.46 (1.27–9.43)

Peak exposure ≥4.0 ppm group
Compared low peak exposure
(0.1–1.9 ppm)
35 years of median length of
follow-up

Beane Freeman et al. [44] Update of Hauptmann et al.
1966–2004

Leukemia: 48 deaths
RR 1.42 (0.92–2.18)
Myeloid Leukemia: 19 deaths
RR 1.78 (0.87–3.64)

Peak exposure ≥4.0 ppm group
42 years of median length of
follow-up

Pinkerton et al. [34] 11,039 garment workers
1955–1998

Leukemia: 15 deaths
SMR 1.92 (1.08–3.17)
Myeloid Leukemia: 8 deaths
SMR 2.55 (1.10–5.03)

The mean TWA exposure 0.15 ppm
Multiple cause mortality from
leukemia and myeloid leukemia
10+ years exposure and 20+ years
since the first exposure

Meyers et al. [45] Update of Pinkerton et al.
1955–2008

Leukemia: 23 deaths
SMR 1.74 (1.10–2.60)
Myeloid Leukemia: 10 deaths
SMR 1.90 (0.91–3.50)

Multiple cause mortality from
leukemia and myeloid leukemia
10+ years exposure and 20+
years since the first exposure

CI Confidence interval, SMR Standardized mortality ratio, RR Relative risk, TWA Time-weighted average
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formaldehyde oxidation, also did not show an increase
in covalent adducts in bone marrow following formalde-
hyde inhalation [57]. In rats and non-human primates,
exogenous DNA adducts formed by inhaled 13CD2-for-
maldehyde were found only in the nasal epithelium and
not in the bone marrow and peripheral blood cells (rats:
10 ppm, 1 or 5 days; 2 ppm, 7–28 days; 15 ppm, 1–4 days;
monkeys: 6 ppm, 2 days) [36, 58–60]. These studies con-
cluded that exogenous formaldehyde does not cause
distant-site toxicity beyond the portal of entry. Although
the exposure periods tend to be short, these results show
that Zhang et al.’s hypothesized modes of action of
formaldehyde-induced leukemia might be unlikely [14].
In contrast, some animal studies reported an increased

incidence of hematological malignancies or toxicity in
bone marrow following formaldehyde exposure. The in-
cidence of lymphoma in mice exposed to 14.3 ppm for 2
years was slightly increased (p = 0.06), and survival-
adjusted undifferentiated leukemia in rats was increased
(p < 0.0167) [24]. Hematopoietic tumors in high-dose
oral-exposed rats [61] and clastogenic and cytogenetic
effects on the bone marrow in rats exposed to low con-
centrations of formaldehyde (0.5 or 1.5 mg/m3) were ob-
served [62]. However, there were questions regarding
the data reliability of these studies, and other studies
contradicted the results [29, 54]. Recent animal studies
designed to simulate human occupational exposures re-
ported bone marrow toxicities induced by formaldehyde,
suggesting potential toxic mechanisms via oxidative
stress. Mice exposed to up to 3 mg/m3 formaldehyde (8
h/day for 7 days) by nose-only inhalation exhibited a sig-
nificant dose-dependent increase in reactive oxygen spe-
cies and DPCs and a decrease of glutathione in distant
organs, including bone marrow [63]. Under a similar ex-
posure condition for 2 weeks, there was a significant de-
crease in the counts of leucocytes, erythrocytes, and
lymphocytes and bone marrow toxicity induced via oxi-
dative stress, inflammation, and apoptosis [64, 65]. Fur-
thermore, whole-body inhalation of 3 mg/m3 in mice
decreased nucleated bone marrow cells and colony for-
mation from bone marrow stem/progenitor cells, in-
creasing oxidative stress [66, 67]. In mice exposed to
formaldehyde (20, 40, and 80mg/m3) for 15 days (2 h/
day), bone marrow toxicities (pathological changes, de-
creased activity of antioxidants, increased micronucleus,
DNA damage, and malondialdehyde) and expression
changes in Prx, Mpo, Bax, Bcl-2, and Cycs protein were
observed [68, 69]. Deficiencies of the genes Aldh2, Adh5,
and Fancd2, which detoxify endogenous formaldehyde,
led to hematotoxicity and leukemia in mice [70, 71].
Interestingly, studies showing bone marrow toxicity
caused by formaldehyde were mainly conducted in mice,
an important consideration in light of the interspecies
differences in exposure effects [72]. Based on these

results, indirect or unknown effects of formaldehyde may
cause toxicity at the distant site, including bone marrow.
Alterations in the genes related to leukemia development
caused by formaldehyde exposure would be key events in
converting a hematopoietic stem cell into a leukemic stem
cell and subsequent disease development [8, 73].
Inconsistency of results from numerous studies about

formaldehyde exposure and leukemia demonstrates the
need to consider the effects of individual genetic back-
grounds, interspecies differences, and exposure concen-
tration and duration, as the expression of a phenotype
can differ between individuals equally exposed to a toxi-
cant [74–77]. In this regard, to help better understand
this complexity, we applied a novel approach that uti-
lizes genomic data in order to summarize the association
between formaldehyde and leukemia. In the summariz-
ing process, we additionally suggest specific genes as po-
tential biomarker candidates with strong links to
formaldehyde exposure and leukemia development.

Formaldehyde-related genomic resources
With the development of bioinformatics, approaches
that utilize existing data to elucidate biological phenom-
ena are widely used. Biological databases manage diverse
data types, such as DNA, RNA, proteins, diseases, path-
ways, and literature studies [78]. The active use of data-
bases can provide new perspectives on human-related
studies, such as biomarker identification, prediction of
human health effects, early diagnosis of disease, and
drug development [79, 80]. To explore the association
between formaldehyde exposure and leukemia through
molecular network analysis, we searched formaldehyde-
related genes from public and commercial databases.
The Comparative Toxicogenomics Database (CTD) is

a publicly available database that provides information
about the human health effects of chemicals (http://
ctdbase.org/). Its core contents include various chem-
ical–gene–disease interactions manually curated from
the literature [22]. These data are not only internally in-
tegrated with each other but also with external datasets
in order to expand networks and predict novel infer-
ences. Pathway Studio (version 12.3; Elsevier,
Netherlands) is a commercially available text mining-
based biological network analysis software that enables
researchers to explore molecular interactions of diverse
biological processes and visualize this information by in-
tegrating knowledge from millions of scientific publica-
tions [81]. Through the keyword search in CTD and the
Pathway Studio database, we retrieved 3927 and 416
formaldehyde-related genes, respectively (accessed 1 Oct
2020). We then identified 122 common genes affected
by exogenous formaldehyde exposure in both databases
through the examination of the original papers (Supple-
mentary materials).
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Possibility of oxidative stress-mediated leukemia
development
Network-based approaches are widely used to elucidate
dynamic biological interactions [82, 83]. The greatest ad-
vantage of molecular network analysis is that it can be
used to determine interactions among multiple factors
that affect a correlation, based on a vast scientific litera-
ture, instead of focusing on one-dimensional relation-
ships among a small number of factors. To infer the
association between formaldehyde exposure and
leukemia incidence, we explored key molecular networks
for the 122 common genes using the Pathway Studio
software. Pathway Studio presents biological relations
through the connectivity (edge) among the entities
(nodes), such as genes, cell processes, diseases, or chemi-
cals. The relation is determined using reference sen-
tences extracted from the scientific literature and the
number of references [81]. Therefore, our network ap-
proach sums up the existing knowledge known between
formaldehyde and leukemia.
The biological interactions of the 122 genes associated

with hematological malignancies and cell processes were
initially predicted (Fig. 1, Supplementary materials). For
the minimal academic credibility, only relations con-
firmed by more than three references were considered.
Subsequently, the criteria of the number of references
were adjusted, considering the total connectivity on each
entity (i.e., the total amount of relations) in the Pathway
Studio database (1 reference per 1000 connectivity) to
reduce the bias of analysis from interactions that have
been more intensively studied. We selected
formaldehyde-related hematological malignancies by re-
ferring to epidemiological data in the IARC report pub-
lished in 2012 [13]. The relation types of “Quantitative
Change,” “Genetic Change,” and “Regulation” between
genes and diseases were analyzed (Fig. 1a). These genes
were associated with many subtypes of leukemia, lymph-
oma, and myeloma (AML, chronic myeloid leukemia,
acute lymphoblastic leukemia, chronic lymphocytic
leukemia, Hodgkin’s disease, non-Hodgkin’s lymphoma,
myelodysplastic syndrome, etc.). Figure 1b shows that
these genes regulate the cell processes associated with
the genotoxic and cytotoxic effects of formaldehyde. Our
prediction suggests that exposure to formaldehyde in-
creases the generation of reactive oxygen species and in-
duces oxidative stress and DNA damage, resulting in
cytotoxicity and an increased cancer risk caused by ab-
normal cell proliferation and differentiation. Addition-
ally, a detailed review summarized in Fig. 2 was
conducted by screening major genes, cell processes, and
leukemic diseases with many interactions in the network
to determine their influence on the hematopoietic sys-
tem. We carefully examined the reliability of references
regarding the correlation between formaldehyde

exposure and other entities to distinguish any inaccurate
reference information that the text mining technique
could have produced; for example, are the associations
negative or positive simply based on the number of ref-
erences? Do the studies come primarily from one re-
search group? However, our current analysis could not
distinguish conflicting interests among research groups.
As a result of this detailed literature-based prediction,
we hypothesize that formaldehyde can induce the devel-
opment of leukemia by disturbing the normal differenti-
ation process of hematopoietic stem cells through the
induction of dysfunctions in major genes via oxidative
stress. Furthermore, it is predicted that formaldehyde
could interfere with the function of antioxidant enzymes
in the bone marrow and lymphocytes. Alterations of
genes GSTT1 and GSTP1 that inhibit oxidative stress
[84] were associated with leukemia, especially AML. The
expression changes in these genes were also identified in
the bone marrow of mice that inhaled formaldehyde and
rats’ white blood cells, respectively [64, 85]. Abnormal
lymphocytes are a major feature of lymphohematopoietic
malignancies [86, 87]. To support the reliability of the
networks, we categorized the top diseases and biological
functions of selected genes in Fig. 1 using Ingenuity
Pathway Analysis (Qiagen, Germany), a popular bio-
informatics analysis software (Supplementary Table 1).
Selected formaldehyde-related genes were associated
with cancer and hematological system development and
function. Especially, we suggest major genes that are
worth considering when attempting to identify the links
between formaldehyde exposure and leukemia (Table 2).
Several studies reported that formaldehyde induces ex-
pression changes in TP53 and BCL2, responsible for
regulating apoptotic mechanisms [88–90]. Abnormal
apoptosis due to formaldehyde exposure may lead to un-
regulated self-renewal of hematopoietic stem/progenitor
cells [66, 91]. The BAX/BCL2 ratio has clinical signifi-
cance in leukemias [92]. Furthermore, DNMT3A, which
is regulated by TP53, is frequently mutated in AML and
other hematological malignancies [93], and a decrease in
DNMT3A expression by formaldehyde exposure sug-
gested that formaldehyde has hypomethylation effects
[94, 95]. In various leukemic disease studies, TNF ex-
pression was increased and associated with poor progno-
sis [96–98]. Therefore, identifying the changes in major
genes in the hematopoietic system caused by prolonged
exposure to formaldehyde will be valuable in under-
standing the leukemogenic mechanism.
Utilizing a literature-based network approach, we ex-

plored qualitative associations between formaldehyde
and comprehensive leukemia. It was also predicted that
altered gene expression or mutation triggered by oxida-
tive stress because of formaldehyde exposure could dis-
turb the hematopoietic system and lead to an increased
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risk of malignant hematopoietic diseases. Given that the
biological plausibility of distant-site toxicity by formalde-
hyde inhalation is a key point in elucidating the possibility
of leukemogenesis [14], we also examined our toxicoge-
nomic data for genes/proteins that showed activity
changes at distant sites following formaldehyde inhalation.
Low concentrations of inhaled formaldehyde increased
PDGFRA and MDM2 gene expressions in human periph-
eral lymphocytes of the residents of new apartments [99].
It was also shown that TXN gene expression decreased in
human blood for subjects under controlled conditions
[100]. Gene expression changes in Gpx3, Gstp1, Odc1,
Polr2a, Ptgs1, and Rps6ka5 were identified in white blood
cells of rats exposed to 2 ppm formaldehyde [85]. In
addition, we identified gene expression changes (Atm,

Epo, Cyp1a1, and Gstt1) and protein expression changes
(Csf2ra, Epo, Epor, Bax, Bcl2, Mpo, and Prx2) in the bone
marrow of mice that inhaled formaldehyde [64, 66–69].
The cytokine levels of TNF-α and IL-1β were increased in
the bone marrow of formaldehyde-exposed mice [64]. The
polymorphisms in GSTP1 and PARP1 genes were related
to increased genetic damage in peripheral blood lympho-
cytes of formaldehyde-exposed subjects [34]. Although
not all genes in our toxicogenomic data reflect distant-site
toxicity, some genes associated with leukemic diseases
showed altered expression at distant sites following for-
maldehyde exposure. Based on these findings, indirect or
unknown leukemia-inducing mechanisms caused by for-
maldehyde on the hematopoietic system cannot be ruled
out.

Fig. 1 Biological interactions among the formaldehyde-related genes, a hematological malignancies, and b cell processes. The molecular network
analysis was conducted using Pathway Studio software (version 12.3). The relations between genes/proteins and other entities (disease and cell
process) were analyzed. The schematic legend is located to the left
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Conclusions
In this review, we explored the controversial association
between exposure to the carcinogen formaldehyde and
the incidence of leukemia. Although there are inconsist-
ent results on this topic, recent studies reported the
bone marrow or hematopoietic toxicity by formaldehyde
[65–67]. We analyzed biological networks among

formaldehyde-related genes retrieved from public and
commercial databases to help understand the association
between formaldehyde and leukemia. Our literature-
based prediction suggests a potential leukemia-inducing
mechanism of formaldehyde via oxidative stress, as well
as major genes associated with formaldehyde and
leukemia. Validation of these genes should be performed

Fig. 2 The summarized network of the potential leukemogenic mechanism via oxidative stress. The interactions between selected entities with
many associations in previous network analyses and leukemia-related entities were analyzed

Table 2 Formaldehyde and leukemia related major gene descriptions

Gene Functional
class

Cell process Disease

BCL2 SOD Angiogenesis, Apoptosis, DNA damage,
Hemopoiesis, Inflammatory response, Oxidative
stress

ALL, AML, CLL, CML, Hematologic neoplasm, Hematopoietic system
malignancy, Hodgkin’s disease, Leukemia, Lymphoma, Multiple
myeloma, Myelodysplastic syndrome, Myeloid leukemia, non-
Hodgkin’s lymphoma

DNMT3A Apoptosis, DNA methylation, Hemopoiesis,
Inflammatory response

ALL, AML, CLL, CML, Hematologic neoplasm, Hematopoietic system
malignancy, Leukemia, Lymphoma, Myelodysplastic syndrome,
Myeloid leukemia, Myeloproliferative disorder

TNF GPx, SOD Angiogenesis, Apoptosis, DNA damage,
Hemopoiesis, Inflammatory response, Oxidative
stress

ALL, AML, CLL, CML, Hodgkin’s disease, Leukemia, Lymphoma, Multiple
myeloma, Myelodysplastic syndrome, non-Hodgkin’s lymphoma

TP53 SOD Angiogenesis, Apoptosis, DNA damage, DNA
methylation, Hemopoiesis, Inflammatory response,
Oxidative stress

ALL, AML, Bone marrow failure, CLL, CML, Hematologic neoplasm,
Hematopoietic system malignancy, Hodgkin’s disease, Leukemia,
Lymphoid leukemia, Lymphoma, Multiple myeloma, Myelodysplastic
syndrome, Myeloid leukemia, Myeloproliferative disorder, non-
Hodgkin’s lymphoma

SOD Superoxide dismutase, ALL Acute lymphoblastic leukemia, AML Acute myeloid leukemia, CLL Chronic lymphocytic leukemia, CML Chronic myeloid leukemia,
GPx Glutathione peroxidase
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in further studies. To better understand the leukemo-
genicity of formaldehyde, reproducible experiments that
determine the causality are needed. Important factors,
such as individual genetic backgrounds, interspecies dif-
ferences, and exposure degree, should be considered.
Further studies that correctly evaluate the distant-site
toxicity utilizing well-designed genomic data to simulate
prolonged occupational exposure will also be needed.
Nevertheless, the possibility of other perspectives, such
as aberrant activation of major genes and signaling path-
ways, is also worth considering. Our approach can be
used to complement experimental data for elucidating
the effects of genetic factors and can be applied in the
identification of new mechanisms and biomarkers.
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